一九文学网

您当前的位置: 一九文学网 > 范文 > 工作总结

【精选】初中数学知识点总结

时间: 2025-06-17 08:06:37    人气:1117

【精选】初中数学知识点总结15篇

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,通过它可以正确认识以往学习和工作中的优缺点,让我们好好写一份总结吧。那么你真的懂得怎么写总结吗?以下是小编帮大家整理的初中数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学知识点总结1

  一、基本知识

  ㈠、数与代数A、数与式:

  1、有理数

  有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方

  向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的

  绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN除法一样。

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作

  为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则

  连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组

  一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的‘方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法

  大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的

  形式去解(3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

  也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:

  I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;

  III当△B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。

  ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

  ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  ㈡空间与图形A、图形的认识1、点,线,面

  点,线,面:①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

  展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相

  等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  2、角

  线:①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

  比较长短:①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出

  现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形

  二、基本定理

  1、过两点有且只有一条直线2、两点之间线段最短

  3、同角或等角的补角相等4、同角或等角的余角相等

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补

  15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边

  17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余

  19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等

  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等

  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等

  28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合

  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°

  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形

  36、推论2有一个角等于60°的等腰三角形是等边三角形

  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半

  5

  39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形

  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°

  50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°

  52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等

  55、平行四边形性质定理3平行四边形的对角线互相平分

  56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等

  62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等

  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形

  68、菱形判定定理2对角线互相垂直的平行四边形是菱形

  69、正方形性质定理1正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的

  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形

  78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比

  98、性质定理3相似三角形面积的比等于相似比的平方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

  110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形

  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr

  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径

  124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心

  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等

  128、弦切角定理弦切角等于它所夹的弧对的圆周角

  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rdR+r(Rr)

  ④两圆内切d=R-r(Rr)⑤两圆内含dR-r(Rr)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n

  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144、弧长计算公式:L=n兀R/180

  145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)

  一、常用数学公式

  公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根

  b2-4ac归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。8、面积法

  平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。9、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。10、客观性题的解题方法

  选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

  填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

  (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

  (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

  (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

  (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

初中数学知识点总结2

  一、“三步六环”复习课型范式构建的背景分析

  (一)初三数学总复习的低效教学影响了中考教学质量的提高

  初三数学的复习教学,注重“四基”(基础知识、基本技能、基本思想和基本活动经验)的巩固和“四能”(发现问题、提出问题、分析问题、解决问题的能力)的提升。由于受复习教学方法传统、时间不足等因素的限制,往往不能处理好知识巩固与能力提升之间的关系,导致复习教学实效不强。尤其是在初三下学期的复习教学中,大多数教师采用“一基础二专题三综合”的复习方式,使得复习教学“高耗低效”,不能大大提高学生发现问题、提出问题、分析问题和解决问题的能力。同时在复习教学中,往往采用市面上的教辅资料,内容超标,试题偏难,不符合复习教学的要求,制约着初三中考数学教学质量的提高。

  (二)“三步六环”复习课型范式是课改实验教学的时代产物

  目前,基础教育课程改革深入推进,虽然带来了许多可喜的变化,但许多一线初三教师在实践中看到了许多隐藏的教学危机。如何利用小组合作学习提高初三中考的教学质量,是许多课改实验学校面临的重大课题。笔者对任教学校班级的学生进行了抽样访谈,访谈分析反映出初三学生数学总复习阶段的四个问题:一是不熟悉中考数学考纲的考试要求和考试目标,没有明确的初三数学总复习的方向;二是数学基础知识掌握不够全面,没有完整的.认知结构,对初中数学知识的逻辑关系不清晰;三是数学基本解题技能掌握不足,对初中数学知识的应用把握不清;四是数学基本思想和基本活动经验欠缺,不能灵活地运用所学知识和技能。

  “三步六环”复习课型范式的实践研究,能转变教师复习课的教学理念,建立更加适合本地区教学实际情况的初三数学“三步六环”复习课型的范式,掌握更加科学有效的复习方法,形成优质的初三数学复习教学资源,提升初三教师的数学专业能力,转变学生的数学学习方式,提升学生的课堂参与度,变被动的枯燥复习为主动的兴趣探究,从而提高初三数学的教学质量。

  二、“三步六环”复习课型范式构建的策略分析

  (一)关键词的概念界定

  1、复习课型。复习课型是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型。开展数学复习课的目的是温故知新,查漏补缺,完善认知结构,促进学生解题思想方法的形成,发展数学能力,增强学生运用数学知识解决问题的能力。

  2、“三步六环”。这是一种适合初三数学总复习教学的高效课堂模式,其基本框架如下:

  主要包括:

  (1)“三步”:第一步“先做后讲”,体现在三点:①学生提前1~2天完成下发的复习导学案;②老师及时批改了解学生的预习情况;③老师根据考纲、课标,结合学生的预习反馈进行二次备课。

  第二步“反思诊断”,体现在四点:①有反思――作业讲评;②有跟进――针对内容的重难点和学生的易错点;③有变式――针对内容的重难点和学生的易错点;④有系统――二次订正整理。

  第三步“滚动测试”,体现在两点:①滚动及时――重点考查近期重难点、易错点知识;②反馈评价――关注师徒、小组捆绑评价。

  (2)“六环”:指初三数学复习课堂教学的六个步骤:自主复习、合作交流、展示质疑、典例精讲、训练达标、总结评价。这六环环h递进、相辅相成。只有保持复习课堂高效的可持续性,才能保障中考教学质量的提升,这里很关键的两点因素应务必关注:其一,教师要精心研读课标考纲,悉心研究中考试题,用心编制总复习导学案,为学生高效进行总复习指明方向;其二,课堂教学中的发展性评价应及时跟进,让学生学会反思归纳,分享复习的快乐。

初中数学知识点总结3

  一.算法,概率和统计

  1.算法初步(约12课时)

  (1)算法的含义、程序框图

  ①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

  ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

  (2)基本算法语句

  经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

  (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  3.概率(约8课时)

  (1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

  (2)通过实例,了解两个互斥事件的概率加法公式。

  (3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  (4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

  (5)通过阅读材料,了解人类认识随机现象的过程。

  2.统计(约16课时)

  (1)随机抽样

  ①能从现实生活或其他学科中提出具有一定价值的统计问题。

  ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

  ③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

  ④能通过试验、查阅资料、设计调查问卷等方法收集数据。

  (2)用样本估计总体

  ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。

  ②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

  ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

  ④在解决统计问题的过程中,进一步体会用样本估计总体的‘思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。

  ⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。

  ⑥形成对数据处理过程进行初步评价的意识。

  (3)变量的相关性

  ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

  ②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

  二.常用逻辑用语

  1。命题及其关系

  ①了解命题的逆命题、否命题与逆否命题。

  ②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。

  (2)简单的逻辑联结词

  通过数学实例,了解“或”、“且”、“非”的含义。

  (3)全称量词与存在量词

  ①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。

  ②能正确地对含有一个量词的命题进行否定。

  3.导数及其应用(约16课时)

  (1)导数概念及其几何意义

  ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例3)。

  ②通过函数图像直观地理解导数的几何意义。

  (2)导数的运算

  ①能根据导数定义,求函数y=c,y=x,y=x2,y=1/x的导数。

  ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

  ③会使用导数公式表。

  (3)导数在研究函数中的应用

  ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

  ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。2.圆锥曲线与方程(约12课时)

  (1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

  (2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。

  (3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。

  (4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。

  (5)了解圆锥曲线的简单应用。

  三.统计案例(约14课时)

  通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。

  ①通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

  ②通过对典型案例(如“质量控制”、“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。

  ③通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。

  ④通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。

  2.推理与证明(约10课时)

  (1)合情推理与演绎推理

  ①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的。推理,体会并认识合情推理在数学发现中的作用(参见例2、例3)。

  ②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。

  ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

  (2)直接证明与间接证明

  ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

  ②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

  数学概率知识点汇总

  第一部分:随机事件和概率

  (1)样本空间与随机事件

  (2)概率的定义与性质(含古典概型、几何概型、加法公式)

  (3)条件概率与概率的乘法公式

  (4)事件之间的关系与运算(含事件的独立性)

  (5)全概公式与贝叶斯公式

  (6)伯努利概型

  其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,大家一定要引起重视

  第二部分:随机变量及其概率分布

  (1)随机变量的概念及分类

  (2)离散型随机变量概率分布及其性质

  (3)连续型随机变量概率密度及其性质

  (4)随机变量分布函数及其性质

  (5)常见分布

  (6)随机变量函数的分布

  其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。

  第三部分:二维随机变量及其概率分布

  (1)多维随机变量的概念及分类

  (2)二维离散型随机变量联合概率分布及其性质

  (3)二维连续型随机变量联合概率密度及其性质

  (4)二维随机变量联合分布函数及其性质

  (5)二维随机变量的边缘分布和条件分布

  (6)随机变量的独立性

  (7)两个随机变量的简单函数的分布

  其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,一定要重视!

  第四部分:随机变量的数字特征

  (1)随机变量的数字期望的概念与性质

  (2)随机变量的方差的概念与性质

  (3)常见分布的数字期望与方差

  (4)随机变量矩、协方差和相关系数

  其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算

  第五部分:大数定律和中心极限定理

  (1)切比雪夫不等式

  (2)大数定律

  (3)中心极限定理

  其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。

  第六部分:数理统计的基本概念

  (1)总体与样本

  (2)样本函数与统计量

  (3)样本分布函数和样本矩

  其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下

  第七部分:参数估计

  (1)点估计

  (2)估计量的优良性

  (3)区间估计

初中数学知识点总结4

  一、函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  二、相交线与平行线

  1、知识网络结构

  2、知识要点

  (1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  (2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  (3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。+=180°;+=180°;+=180°;+=180°。

  3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。

  4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a⊥b时,====90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  5、同位角、内错角、同旁内角基本特征:

  在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的‘两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。

  在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  三、实数

  1、实数的分类

  (1)按定义分类:

  (2)按性质符号分类:

  注:0既不是正数也不是负数.

  2、实数的相关概念

  (1)相反数

  ①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  ②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  ③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  (2)绝对值|a|≥0.

  (3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  (4)平方根

  ①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  ②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  (5)立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  3、实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  4、实数大小的比较

  (1)对于数轴上的任意两个点,靠右边的点所表示的数较大.

  (2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  (3)无理数的比较大小:

初中数学知识点总结5

  字母表示数

  代数式的概念:

  用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、0,那么|a|=a;②如果a0,b0,b+c0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  如何整理数学学科课堂笔记

  一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。将课堂上未听懂的‘问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些

  第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了.

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

初中数学知识点总结6

  整式的加减

  2、1整式

  1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、

  2、单项式的系数:是指单项式中的数字因数;

  3、单项数的次数:是指单项式中所有字母的指数的和、

  4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、

  5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的‘每一项都包括它前面的符号。

  6、单项式和多项式统称为整式。

  2、2整式的加减

  1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可、同类项与系数大小、字母的排列顺序无关

  3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

  6、整式加减的一般步骤:

  一去、二找、三合

  (1)如果遇到括号按去括号法则先去括号、(2)结合同类项、(3)合并同类

延伸阅读

猜你喜欢

推荐阅读